PACCAR H2 SCR Understanding

Background/Intro

- PACCAR is investigating the use of **hydrogen** internal combustion engines (H2IČE) in heavy-duty trucks to reach carbon emissions sustainability goals.
- Hydrogen vehicles still **produce NOx**, a pollutant subject to emission regulation. Diesel vehicles have a selective catalytic reduction (SCR) system that reacts with NOx and urea-based Diesel Exhaust Fluid (DEF) to form environmentally safe nitrogen (N2) and oxygen (O2).
- While the DEF-based SCR may be applied for H2ICE emission after treatment, hydrogenbased SCR (H2SCR) is a promising alternative that could utilize H2 fuel as a reductant.

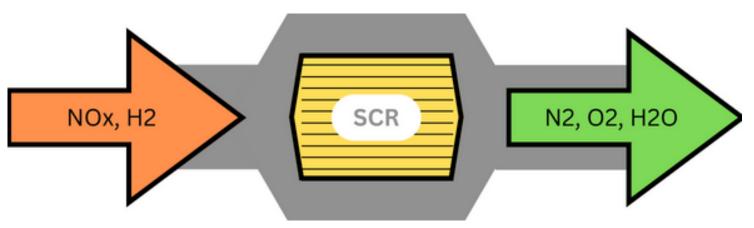


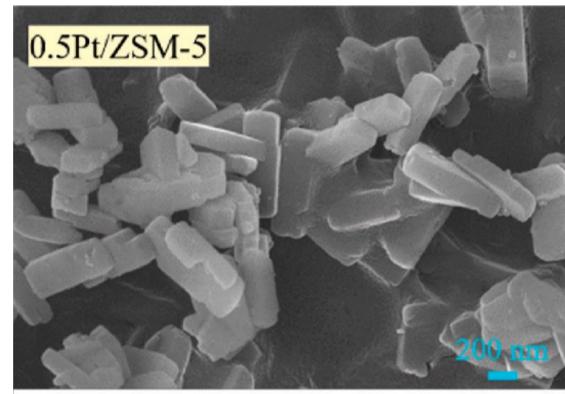
Fig. 1.. Diagram of SCR Systems in Automobile Applications

Impact of Switching from **Diesel to Hydrogen Trucks**

- Current Diesel Trucks need to use ammonia-based SCR.
- The ammonia is used as a reductant for the SCR catalyst.
- The ammonia needs to be filled up separately from the fuel, which introduces added complexity.
- New hydrogen trucks can potentially use hydrogen SCR.
- The hydrogen fuel can be used as a reductant for exhaust aftertreatment.
- This can save drivers time and bring convenience.

Fundamental Science

Catalyst Structure


- substrate.

Catalyst Properties

- Activity: How quickly chemical reactions occur on the catalyst.
- Selectivity: How quickly one reaction occurs relative to all reactions.
- Temperature-performance curve: Selectivity and activity are heavily influenced by temperature. Good performance is required across a large temperature range.

2NO + 2
2NO + 1
2NO + 5
2NO + 0
$2H_2 + C$

Fig. 2. Main reactions occurring in an H2SCR system^[1]

Mag. = 30 k, 15 kV, WD = 7.6 mm, InLens Fig. 3. SEM image of a zeolite-supported platinum catalyst^[2]

• Substrate: Bulk material of the catalyst. Most species that react are adsorbed onto the

• Active site: Metal particles that sit on top of the substrate. These play an important role in speeding up chemical reactions.

$$2H_2 \rightarrow N_2 + 2H_2O$$

$$H_2 \rightarrow N_2O + H_2O$$

$$5H_2 \rightarrow 2NH_3 + 2H_2O$$

$$O_2 \rightarrow 2NO_2$$

$$O_2 \rightarrow 2H_2O$$

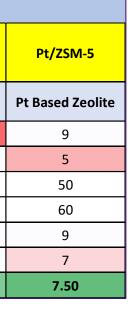
Methods

- **1. Literature Review:** Develop a comprehensive review of existing H2 ar NH3 SCR.
- **2. Pairwise Matrix:** Determine criteria to evaluate catalysts in the decision matrix. See Table 1.
- **3. Catalyst Decision Matrix + Selection:** Evaluate the best of each catalyst type investigated (Pt, Pd, bimetallic). See Table 2.
- 4. In-Depth Catalyst Analysis: Gather more comprehensive information on selected catalysts. Includes system sizing,

perfo	NOx Reduction Activity	Temperature Range	Iation, Range of Reported Temperatures	AND ECC	DNOMIC Totals	Rank
NOx Reduction Activity		5	5	3	13	1
Temperature Range	1		5	1	7	3
Range of Reported Temperatures	1	1		1	3	2
N2 Selectivity	3	5	5		13	1

Table 1. Finalized pairwise matrix

			Catalyst
Criterion	Weight	Pt-Cr/ZSM-35 Pt(.5%)-Cr(1%)	Pd/ZrO2-CeO2
Catalyst Type	N/A	Bimetallic Zeolite	Pd Based Metal Oxide
NOx Reduction Activity	13	7	1
Temperature Range	7	5	9
dT for Temperature Range (C)	0	100	300
T1/2 for Temperature Range (C)	0	85	65
Range of Reported Temperatures	3	5	9
N2 Selectivity	13	3	9
Total	36	5.00	6.11


Table 2. Top three catalysts selected in the decision matrix

Results/Findings

Promising catalysts investigated:

- Bimetallic Platinum and Chromium catalysts on Zeolite Substrate (Pt-Cr/ZSM-35 Pt(.5%)-Cr(1%))
- Platinum Catalysts on Zeolite Substrate (Pt/ZSM-5)
- Palladium Catalysts on a Zeolite and Metallic Substrate (Pd/ZrO2-CeO2)

Discussion

While multiple catalysts are promising candidates for H2-SCR, experimental validation is needed to determine performance under typical dynamic engine conditions.

Conclusion

- H2-SCR is being actively investigated by academic and industry researchers.
- In optimal operating conditions, **several** catalysts can reduce NOx emissions well below the regulation limit.
- Noble metal catalysts (Pt, Pd) and mixed**metals** display the best performance.
- Choice of substrate has a significant **impact** on reaction rate and selectivity.
- **Zeolite-supported** catalysts are typically more active and selective, but they have narrow optimal temperature ranges.
- Metal oxide-supported catalysts display much wider temperature-performance curves.

Acknowledgments

- Thank you to Trevor Ott for his support and mentorship for this project.
- Thank you to PACCAR for the opportunity to work on this project and gain valuable experience.
- Thank you to Dr. Rutz for his advice and support for the project and capstone projects.
- Thank you to the University of Washington College of Engineering for the experience.

References

[1] Borchers M et al, Industrial & Engineering Chemistry Research, vol. 60, 6613-6626.

[2] Lee, K et al, Journal of Cleaner Production, vol. 434, 140333.